Development of ZnO-InP Heterojunction Solar Cells for Thin Film Photovoltaics

Authors

Kyle H. Montgomery, Qiong Nian, Xin Zhao, Haoyu U. Li, Gary J. Cheng, Thomas N. Jackson, Jerry M. Woodall

Publication

40th IEEE Photovoltaic Specialists Conference, Denver, CO, 2014.

Download

Manuscript (pdf)
Poster (pdf)
Copyright notice: This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author’s copyright. These works may not be reposted without the explicit permission of the copyright holder.

Abstract

As a photovoltaic material, InP is nearly ideal for a single junction solar cell in terms of its band gap and absorption coefficient. However, its widespread use is limited due to the expense of substrates and depositing monocrystalline material over large areas. As a route towards reducing the cost, there is interest in examining polycrystalline III-Vs, where film thicknesses ~1 um could be employed, assuming a reflective back surface. This work examines one aspect towards delivering high efficiency polycrystalline InP-based solar cells by focusing on the use of low-cost, earth-abundant ZnO as the emitter layer. Due to surface Fermi-level pinning in InP, ZnO is an ideal choice for this purpose. We have studied the effects of using aluminum-doped zinc oxide, as well as thin i-ZnO interlayers, deposited onto p-type InP substrates. So far, a maximum power conversion efficiency of 7.3% has been realized, which is a record for this type of heterojunction cell structure. We further discuss the impact of the i-ZnO interlayer on enhancing short wavelength response in the cell.

Keywords

indium phosphide, photovoltaic cells, solar energy, zinc compounds.

DOI

Citation

K. H. Montgomery, Q. Nian, X. Zhao, H. U. Li, G. J. Cheng, T. N. Jackson, J. M. Woodall, “Development of ZnO-InP Heterojunction Solar Cells for Thin Film Photovoltaics,” presented at the 40th IEEE Photovoltaic Specialists Conference, Denver, CO, 2014.